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Lecture 2. Basic structures: 2D boundary vortex

Figure: Vortex and transverse DWs (Jamet et al., (2015))



Basic structures: 2D boundary vortex

We want to understand a structure of a boundary vortex. The simplified
energy is (m € S%)

E(m) = 52/ IVm(r)|? d°r + / m3(0, x) dx. (1.1)
R2. R
We cannot talk about minimizers in a usual sense as for vortex boundary
conditions
m(r) > ) 5 el 5 oo, (1.2)

Ir|
energy is infinite. Instead we want to look at critical points.
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Figure: Boundary vortices (Tchernyshyov, Chern, PRL, (2005))



2D boundary vortex - reformulation

We can reformulate the problem as a scalar one and link it to 1D non-local
gradient phase transitions. Indeed, using m = (cos 6, sin 8) the energy
becomes

E(m)=F() =¢ /}R2 |V9|2d2r+/Rsin29d7-ll. (1.3)
+

The critical points/local minimizers of this energy have been extensively
studied (e.g. Toland, J. Func. An., (1997); Cabre, Sola-Morales, CPAM,
(2005); Kurzke, CVPDE,(2006); Moser, ARMA, (2004) )

Let us link the energy (1.3) with some nonlocal 1D energy. We can fix a trace
of @ at the boundary to be a given function, 8(x, 0) = 8(x) and then
reformulate the problem in terms of §. It amounts to obtain a harmonic
extension of 8 on a half-plane, or solve

A =0inR:, 6(x,0)=06(x). (1.4)

We can then plug this solution into the energy and minimize with respect to 6.



2D boundary vortex - nonlocal 1D energy

Let us proceed informally and assume 8 € CZ(R). We can define the Fourier
transform in x variable as

O(k,y) = /}Ref"kxe(x,y) dx. (1.5)

We also note that 6(k,0) = é(k) Writing the Euler-Lagrange equations
(recall that @ is fixed) we obtain

—820(k, y) + K*6(k,y) =0, 6(k,0)=8(k), 8,6(k.cc)=0.  (1.6)

The solution of this equation is 8(k, y) = 6(k)e™ .
We can now rewrite our energy using Fourier representation as

F(6) := €’ /OOC/R\6y§(k,y)|2+k2\§(k,y)|2dk dy+/Rsin29‘(x) dx  (1.7)



2D boundary vortex - nonlocal 1D energy

We plug expression for é(k, y) into the energy and obtain

H@:&Alwy%ﬂwam%ww+ég¥a@w (1.8)

:/k|§(k)|2 dk+/sin2 8(x) dx. (1.9)
R R
Taking inverse Fourier transform we obtain
2 .
// 1B(x ‘X y)| dxdy+/sin2§(x)dx. (1.10)
- R

We observe that our energy is now mformally represented as a non-local
gradient phase transition problem

F(é):EQ/\a%é(x)|2 dx—|—/sin2 8(x) dx. (1.11)

Various aspects of similar problems have been extensively studied (e.g.
Alberti, Bouchitté, Seppecher, C.R. Acad. Sci. Paris, (1994); Palatucci,
Savin, Valdinoci, Ann. Mat. Pure Appl., (2013) )



2D boundary vortex - classification of critical points

The Euler-Lagrange equation is

2
%/ (20(x) — 6(x — &) —0_(X+€))éd£+sin 26(x) =0 Vx € R.
R
We can explicitly check that
B(x) = g + arctan(x/e?) + 7n (1.12)

is a non-trivial solution of this equation.
The Euler-Lagrange equation for original problem is
1
AG=0inR;, £°9,6(x,0) = — 5 sin20(x, 0). (1.13)

We can classify solutions of this problem (Toland, J. Func. An., (1997))

Let 6 be a bounded solution of (1.13). Then either 0 is constant solution,
periodic solution, or there exists a € R, n € 7Z such that

0(x,y) = g =+ arctan ;:;2 + 7n. (1.14)




Basic structures: 2D baby skyrmion

We want to understand a skyrmion structure in thin films. The simplified
energy is

E(m) = -, [Vm(r)|* d*r (1.15)
defined in the class
A={m¢e Hy(R*R’) : Vm € (R R® x R*), Im(x)| =1a.e}. (1.16)
We impose skyrmion boundary conditions
m(r) — —esz as |r| = o (1.17)
and a topological degree condition

Nm) = 2 [ (@m < m) =1 (1.18)



Basic structures: 2D baby skyrmion

It is clear that
E(m) = / |Vm(r)|? d°r = / |&om —m x Om|* d’r + 87 > 81 (1.19)
R2 R2
We want to find a suitable profile such that
oHm—mx O0im =20 (1.20)
This is Belavin-Polyakov profile (Belavin, Polyakov, JETP Lett. (1975))

_( d2x 42y 177
_<1+r2’1+r2’1+r2> (1.21)
@222y, i O
WA WA WA
\\_;Vv "' / § X ' ‘\v’/ 4
\
SR DY N
Bloch Néel Anti

Figure: (a) Bloch skyrmion; (b) Neel skyrmion; (c) Anti-skyrmion



Basic structures: 2D baby skyrmion.

We can formulate a general problem. Consider the energy
E(m) = / |Vm(r)|* d°r — 2/{/ Vms-md?r
Q Q
+(Q— 1)/(1—m§)d2r+2h/(1+m3)d2r,
Q Q

wheremec A, QCR?> m=—e;onR*\Q, N(m)=d c Z.

@ Existence of minimizers for d = 1 (Melcher, Proc. R. Soc. Lon. A
(2014); Monteil, Muratov, Simone, S, Com. Math. Phys. (2023))

@ Existence of minimizers for d # {0, 1}7 partial results
@ What are minimizing profiles? (Li, Melcher, J. Func. An. (2018))

@ Existence/structure of skyrmion lattice? (Hill, S, Tchernyshev, SciPost
Phys. (2021))



Lecture 2. Magnetostatic energy.

The magnetostatic / stray field energy is defined as

Ems(M) = —% QHd~Md3r. (1.22)
Here Hy is a demagnetizing field solving
V-(Hi+M)=0, VxHg=0 (1.23)
Introduce a scalar potential Uy : R® — R with Hy = —V Uy and Uy solves
. VUg-Vod’r= /Q M Vo¢d’r, forany ¢ € CZ(R%). (1.24)

The stray field energy can be rewritten as
Ems(M) = @/vud MdPr = @/ |V Ul dr. (1.25)
2 Q 2 R3

Solving Poisson equation we obtain

7& VM(I‘)VM(I‘/) 3 3
Ems(M) = 87r,/R e P d’rd’r. (1.26)



Magnetostatic energy: Min/Max problems.

Rescaling M to m, Uy to umn and Ens we can represent

Ems(m) = %/]Rf‘ IVum?d®r, Aup=V-m. (1.27)

Theorem 2

For any m € [*(Q;R?) with Q C R® bounded there is unique solution
Um € H'(R®) of the following maximization problem

1
max /m-Vud3r— 7/ |Vul® dr. (1.28)
ueHY(R3) Jq 2 R3

Moreover, un, satisfies Euler-Lagrange equations
Vi -Vod’r= / m-V¢d’r, forany ¢ € C(R?) (1.29)
R3 Q
and

Ems(m) = %/ |Vun|* d®r = max /m-Vud%—%/ [Vul® d*r.
R3 Q R3

ueH1(R3)




Magnetostatic energy: vector potential.

There is a way to represent magnetostatic energy through minimizatioin
problem. We have Maxwell’'s equations

V-(hg+m)=0, Vxh=0. (1.30)

Before we used hy = —Vu to obtain maximization problem using potential u.
Now we can use hg +m = V x a with Coulomb gauge V-a = 0. This leads to

Vx(Vxan)=-Aan=Vxm. (1.31)

The magnetostatic energy is

1 1
Ems = f/ lhy|> d®r = f/ IV X am —m|* d°r. (1.32)
2 R3 2 R3



Magnetostatic energy: Min/Min problem.

We can formulate a minimization problem (Di Fratta et. al, SIMA, (2020))

Theorem 3

For any m € [(Q;R?) with Q C R® bounded there is unique solution
an € H'(R?) of the following minimization problem

1 1
min f/ |Va|2+f/|m|2—/m-V><a. (1.33)
acHL(R3R3) 2 JR3 2 Ja Q

Moreover, an, satisfies Euler-Lagrange equations

—Aa, =V xm inHYR%R? (1.34)
and
Ems(m) = min = [Val? + = /|m| —/m V X a.
acHL(R3R3) 2 JR3

Useful for localized upper bounds and as a double minimization

min min £(m, a) = min min £(m, a) (1.35)
m a a m



Magnetostatic energy - two representations

1. We define n - dimensional Fourier transforms as

F(F)(k) = F(k) :/ f(r)e "™ d"r. (1.36)
Rn
Using equation for magnetostatic potential u we obtain (k) = mﬁj%’k
1 k-m(k)* s
Vul d’r = k= d’k.  (1.37
[var o= @y Jes kP (1:37)
2. Energy can be written using u(r) = — ;= f ) 4 f (m)(r) oq
Q \r | a7 Jaq |r r’|
_1 B V-m(r) V- -m(r')
Ems(m) = /Vu m= // Brlr— 7 (1.38)

n-m)(r) (n-m)(r) V-m(r) (n-m)(r)
/ /an 8mlr —r/| / o0 8mlr —r/|



Ferromagnetic thin films

We consider the following thin film domain
Q. ={(x.y.2):z€[0,¢€],(x,y) € w CR*}, (1.39)

where 0 < € < 1 and want to simplify magnetostatic energy.
Fact. Let m =1 [ m(x,y, z)dz and let AT =V -m. Then the following

inequality holds:
[ wir = [ var
R3 R3

This allows us to remove dependence of m on z variable in magnetostatics.
We can now use Fourier representation and after calculation obtain

/ /2]- r€(|k|)

3
< Ce?||8:ml| 20, (1.40)

-2 _ € L2 2y 2/
/]R3 |VU| - (2,”)2 \/R2 ‘m3(k)| d |k"2 d'k
1-Fe(K]) o
27r / |7 (KK P e lew.
where
—g|K'| ’
Pk = 1=¢ li] (1.42)

ek T 2



Ferromagnetic thin films: Gioia-James regime

We have the following energy
E(m) = |Vm(r)[? d2r+/ |Vul? (1.43)
Qe

and want to find its I'-limit as € — 0.
It is clear using DCT that if mae — s in L?(w; R?) we have

/ 21 rs(‘k |) 2,/
/ |32 (k K| T2 d°k’ — 0. (1.44)
After rescaling domain in z-variable to

Q={(x.y,z):z€[0,1],(x,y) € w C R?} we obtain

E(m) ~ sa/ IV'm|* + E—12|82m\2 + 6/ m; + o(g) (1.45)
Q

w

Therefore, we can show (Gioia, James, PRSA, (1997))

%E(mg)%a/|Vm|2+/m§ (1.46)



Ferromagnetic thin films: Kohn-S regime

We have the following energy
E(m):ae\lne|/ |Vm(r)|2d2r+/ |Vul? (1.47)
Qc R3

and want to find its I'-limit as € — 0. Rescaling domain in z-variable we obtain

1
€?|Ing|

/ 2 1 2 1 >
= Vm + =loome? + ——— [ |V 1.4
E(m;) a/Q| mg| 2 |6, m¢| ] /}R3 [Vu| (1.48)

We can show that

1 2
S ~ 1.4
e2|In¢| l £|In£| / / m. - n) (1.49)

And hence (Kohn, S, ARMA, (2005))

1
e?|Ing|

E(mg)—m/\vm%%/a (m-n)’, (1.50)

where m = m(x, y) and |m| = 1.



	

