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Lecture 4. Thick films with PMA.

We want to understand magnetization branching in thick films (following

Choksi, Kohn, CPAM, (1998); Choksi, Kohn, Otto, CMP, (1999); Desimone,

Kohn, Müller, Otto, (2006))
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Thick films with PMA – no z dependence.

Do we loose if we don’t branch and m is independent on z?

Let us compute the upper bound on energy of thick films, assuming m is

independent of z . To allow for sharp transitions

E(m) =
ε

|D|

∫
D×(−L/2,L/2)

|∇m| d3r +
Q

|D|

∫
D×(−L/2,L/2)

(1−m23) d3r

+
1

|D|

∫
R×D
|∇u|2 d3r .

For chess-board pattern (D has side p) with x = L/p � 1 we have

1

2|D|

∫
R×D
|∇u|2 d3r ∼ p

∑
(n1,n2)∈Zodd×Zodd

1− e−2πx
√
n21+n22

n21n
2
2

√
n21 + n22

∼ p (1.1)

The total energy is

E(m) ∼ εL/p + p ∼
√
εL

If we consider stripes or Kittel pattern we still obtain E(m) ∼
√
εL.
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Energy lower bound – no z dependence.

We now want to find a lower bound on this energy, assume Q & 1,
√
εL < 1)

E(m) =
ε

|D|

∫
D×(−L/2,L/2)

|∇m| d3r +
Q

|D|

∫
D×(−L/2,L/2)

(1−m23) d3r

+
1

|D|

∫
R×D
|∇u|2 d3r .

We recall that (assuming for simplicity unit periodic cell)

1

|D|

∫
R×D
|∇u|2 d3r =

∑
(n1,n2)∈Z×Z

∫
R

|

a︷ ︸︸ ︷
n1m̂1 + n2m̂2+

b︷︸︸︷
ξm̂3 |2

n21 + n22 + ξ2
dξ, (1.2)

and hence using (a + b)2 ≥ 1
2
b2 − a2 and controlling −a2 with anisotropy∫

R×D
|∇u|2 d3r +

∫
D×(−L/2,L/2)

m21 +m22 &
∑

(n1,n2)∈Z×Z

∫
R

|ξm̂3|2

n21 + n22 + ξ2
dξ
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Energy lower bound – no z dependence.

We can now write this energy bound

E(m) & ε
∫
D×(−L/2,L/2)

|∇′m3| d3r +Q

∫
D×(−L/2,L/2)

(1−m23) d3r

+
∑

(n1,n2)∈Z×Z

∫
R

|ξm̂3|2

n21 + n22 + ξ2
dξ

Assuming m(x , y), then (as for thin films) we explicitly find m̂3(n) and

E(m) & εL
∫
D

|∇′m3| d2r +QL

∫
D

(1−m23) d2r

+
∑

(n1,n2)∈Z×Z

∫
R

|m̂3(n)|2 sin2(2πLξ)

n21 + n22 + ξ2
dξ

After integrating in ξ we arrive at

E(m) & εL sup
x ′∈D
|m3|

∫
D

|∇′m3| d2r +QL

∫
D

(1−m23) d2r

+ L
∑

(n1,n2)∈Z×Z

|m̂3(n)|2min

{
1,

1

L|n|

}
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Energy lower bound – no z dependence.

Now we want to obtain a bound on the following sum

S = εL sup
x ′∈D
|m3|

∫
D

|∇′m3|+ L
∑

(n1,n2)∈Z×Z

|m̂3(n)|2min

{
1,

1

L|n|

}

&
√
εL

√εL sup
x ′∈D
|m3|

∫
D

|∇′m3|+
∑

(n1,n2)∈Z×Z

|m̂3(n)|2min

{
1,

1√
εL|n|

}
Now we have the following estimate

2 sup
x ′∈D
|m3|

∫
D

|∇′m3 · y ′| ≥
∫
D

|m3(x ′ + y ′)−m3(x ′)|2 (1.3)

=
∑

(n1,n2)∈Z×Z

4 sin2
(
n · y ′

2

)
|m̂(n)|2 (1.4)
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Energy lower bound – no z dependence.

It is possible to show that (taking α =
√
εL and integrating over |y ′| = α)

α sup
x ′∈D
|m3|

∫
D

|∇′m3| &
∑
|n|≥α−1

|m̂3(n)|2 (1.5)

On the other hand we have∑
(n1,n2)∈Z×Z

|m̂3(n)|2min

{
1,

1√
εL|n|

}
&

∑
|n|≤α−1

|m̂3(n)|2 (1.6)

Combining above estimates we arrive at

S &
√
εL
∑
n

|m̂3(n)|2

Therefore the energy

E(m) &
√
εL

∫
D

m23 d
2r +QL

∫
D

(1−m23) d2r &
√
εL.

This is the matching lower bound for the micromagnetic energy of thick film

without z dependence.
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Thick films with PMA.

Assumption on m being independent on z is not natural for thick films.

We should be able to decrease the energy by introducing z dependence.
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Landau construction and divergence free fields.

Figure: Landau pattern

We want to show that magnetostatic energy for this pattern vanishes. It is

enough to have
∫

Ωm · ∇φ = 0 for all φ ∈ H10 (Ω) and m · n = 0 on ∂Ω.

Figure: Div free m inside domain: m1 · n = m2 · n at transition
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Energy bound for Landau pattern.

We can consider Landau pattern and obtain energy bound for

E(m) =
ε

|D|

∫
D×(−L/2,L/2)

|∇m| d3r +
Q

|D|

∫
D×(−L/2,L/2)

(1−m23) d3r

+
1

|D|

∫
R×D
|∇u|2 d3r .

Ems(m) = 0, Ean(m) ∼ Qp, Etr (m) ∼ εL
p

The optimal p ∼ ε1/2L1/2/Q1/2 and total energy is

E(m) ∼ Q1/2ε1/2L1/2

So we have a similar scaling as for z independent patterns (Q ∼ 1)

E(m) ∼
√
εL
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Privorotski construction.

We do the following 2D construction (Privorotski, Rep. Prog. Phys., (1972))

In the middle of domain we take m = ±e3 in strips of width a;

Moving towards the boundary we refine the pattern as shown in figure

Figure: Branching pattern (upper side)
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Privorotski construction.

Let us explain the construction inside a cell

Cell is split in three regions: in the middle region m = −e3, in the right

side region m is tangent to circles centered at O or O ′; Rn = |OP|.
Inside cell ∇ ·m = 0 and it defines boundaries between cells (m · n is

continuous across the boundary): r = Rn sec2(θ/2), r ′ = an
6

sec2(θ/2)

Continuity across OO ′ yields an
3

= Rn(sec(θn)− 1).

Figure: Privorotski cell at n-th level
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Privorotski construction – cell energy.

• Magnetostatic energy. Inside the domain we have ∇ ·m = 0 and only top

and bottom boundaries contribute to stray field. If construction has N layers

then magnetization at the top boundary oscillates with the period p = a
3N

,

taking values ±e3.
Therefore, we already know what the magnetostatic energy is from Kittel

construction. Indeed, we have∫
R3
∇u · ∇φ d3r =

∫
Ω

m · ∇φ d3r =

∫
∂Ω

m · nφ d2r (1.7)

and since m at the boundary Ω of a simple Kittel pattern and Privorotski

pattern (with attuned period) coincide, we deduce that

1

2|Q|

∫
R×Q
|∇u|2 d3r =

p

2π3

∑
n1∈Zodd

1− e−2πL
n1
p

n31
∼ α a

3N
. (1.8)
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Privorotski construction – cell energy.

Anisotropy energy is defined as Ea(m) = Q
∫

(1−m23) d2r . In the middle

region of the cell magnetization is m = ±e3 – no contribution from this

region. In the left and right regions magnetization m = (− sin θ, 0, cos θ) (as it

is tangent to corresponding circles) and hence (for θn � 1)

E na (m) = Q

∫ θn

0

sin2 θ

(∫ Rn/ cos2(θ/2)

(Rn−an/2)/ cos θ

rdr +

∫ an/(2 cos θ)

an/(6 cos2(θ/2))

rdr

)
dθ ∼ CQa2nθn

Surface energy is defined as Es(m) = ε
∫
|∇m| d2r . We recall Rn ∼ 2an

3θ2n
and

hn ∼ 2an
3θn

. Therefore

E ns (m) ∼ Cεhn ∼ C
anε

θn

We combine surface and anisotropy energies and minimize in θn to obtain

E ns (m) + E na (m) ∼ C anε
θn

+ CQa2nθn ∼
√
εQa

3
2
n , θn ∼

√
ε

anQ
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Privorotski construction – total energy.

Total energy. We have an = a
3n

and define h =
∑N
n=1 hn. The surface energy

of the middle ”Kittel” region is ∼ C ε(L−h)
a

. We compute the total energy as

E(m) ∼ 2ε(L− h)
a

+
1

a

N∑
n=1

3n−1
√
εQa

3
2
n + C

a

3N
≤ C 2εL

a
+ C

√
εQa

. CQ
1
3 ε

2
3 L

1
3 , with optimal a ∼ ε

1
3 L

2
3

Q
1
3

Figure: Branching pattern (upper side)
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Energy lower bound.

Similarly to the z-independent case we have

E(m) & ε
∫
D×(−L/2,L/2)

|∇′m3| d3r +Q

∫
D×(−L/2,L/2)

(1−m23) d3r

+
∑

(n1,n2)∈Z×Z

∫
R

|ξm̂3|2

n21 + n22 + ξ2
dξ

After calculation we arrive at

E(m) &
∫ L/2
−L/2

(
ε sup
x ′∈D
|m3|

∫
D

|∇′m3| d2r +Q

∫
D

(1−m23) d2r

+
∑

(n1,n2)∈Z×Z

|m̂3(n, z)|2min

{
1,

1

(L|n|)2

})
Combining the first and the last two terms as before we obtain

S = ε sup
x ′∈D
|m3|

∫
D

|∇′m3|+
∑

(n1,n2)∈Z×Z

|m̂3(n, z)|2min

{
1,

1

(L|n|)2

}

&
ε2/3

L2/3

(
ε1/3L2/3 sup

x ′∈D
|m3|

∫
D

|∇′m3|+
∑
n∈Z×Z

|m̂3(n, z)|2min

{
1,

1

(ε1/3L2/3|n|)2

})
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Energy lower bound.

Taking α = ε1/3L2/3 and using as before

α sup
x ′∈D
|m3|

∫
D

|∇′m3| &
∑
|n|≥α−1

|m̂3(n)|2 (1.9)

and ∑
(n1,n2)∈Z×Z

|m̂3(n)|2min

{
1,

1

(α|n|)2

}
&

∑
|n|≤α−1

|m̂3(n)|2 (1.10)

Combining above estimates we arrive at

S &
ε2/3

L2/3

∑
n

|m̂3(n)|2

Therefore the energy

E(m) &
ε2/3

L2/3

∫
D×(−L/2.L/2)

m23 d
2r +Q

∫
D×(−L/2,L/2)

(1−m23) d2r & ε2/3L1/3.

This is the matching lower bound for the micromagnetic energy of thick film

with z dependence.
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