Introduction to Mathematical Micromagnetics

Valeriy Slastikov

Elic University of
BRISTOL



Lecture 4. Thick films with PMA.

We want to understand magnetization branching in thick films (following
Choksi, Kohn, CPAM, (1998); Choksi, Kohn, Otto, CMP, (1999); Desimone,
Kohn, Miiller, Otto, (2006))
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Thick films with PMA — no z dependence.

@ Do we loose if we don't branch and m is independent on z?

Let us compute the upper bound on energy of thick films, assuming m is
independent of z. To allow for sharp transitions
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For chess-board pattern (D has side p) with x = L/p > 1 we have
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The total energy is
E(m)~el/p+p~ Vel

If we consider stripes or Kittel pattern we still obtain £(m) ~ VeL.



Energy lower bound — no z dependence.

We now want to find a lower bound on this energy, assume Q 2 1, Vel < 1)
Q
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a b
1 [+ maris + & |
mmi 4 mmy+&£ms
|Vul> *r = dg, 1.2
ID| Jrxo Z R n?+n+¢€ (1-2)

(n1.n2)ELXTZ

and hence using (a + b)2 > %b — 2% and controlling —a? with anisotropy

5m3|
|Vul? d3r+/ mi 4+ ms > / dé
/]RXD Dx(—L/2.L/2) ! 2 Z ni + n3 + €2

(n1,m)ELXZ



Energy lower bound — no z dependence.

We can now write this energy bound
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Assuming m(x, y), then (as for thin films) we explicitly find /hs(n) and
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After integrating in £ we arrive at
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Energy lower bound — no z dependence.

Now we want to obtain a bound on the following sum
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Now we have the following estimate
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Energy lower bound — no z dependence.

It is possible to show that (taking a = veL and integrating over |y'| = )
asup |l [ [9'ml 2 3 (o) (15)
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On the other hand we have
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Combining above estimates we arrive at
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Therefore the energy
E(m) > \/sL/ ms d’r + QL/(l —m3)d*r 2 VelL.
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This is the matching lower bound for the micromagnetic energy of thick film
without z dependence.



Thick films with PMA.

@ Assumption on m being independent on z is not natural for thick films.

We should be able to decrease the energy by introducing z dependence.




Landau construction and divergence free fields.
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Figure: Landau pattern

We want to show that magnetostatic energy for this pattern vanishes. It is
enough to have [, m- V¢ =0 for all ¢ € H5(2) and m-n =0 on 8.
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Figure: Div free m inside domain: m; - n = m, - n at transition



Energy bound for Landau pattern.

We can consider Landau pattern and obtain energy bound for
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Ems(m) =0, Ea(m)~ Qp, Ey(m)~ €
The optimal p ~ €212 /QY? and total energy is
E(m) ~ Q1/2€1/2L1/2

So we have a similar scaling as for z independent patterns (Q ~ 1)

E(m) ~ Vel



Privorotski construction.

We do the following 2D construction (Privorotski, Rep. Prog. Phys., (1972))
@ In the middle of domain we take m = +ejs in strips of width a;
@ Moving towards the boundary we refine the pattern as shown in figure

Figure: Branching pattern (upper side)



Privorotski construction.

Let us explain the construction inside a cell

@ Cell is split in three regions: in the middle region m = —es, in the right
side region m is tangent to circles centered at O or O'; R, = |OP|.

@ Inside cell V-m = 0 and it defines boundaries between cells (m-n is
continuous across the boundary): r = R,sec’(6/2), r' = % sec*(6/2)

@ Continuity across OO’ yields 2 = Ry(sec(6,) — 1).

Figure: Privorotski cell at n-th level



Privorotski construction — cell energy.

o Magnetostatic energy. Inside the domain we have V- m = 0 and only top
and bottom boundaries contribute to stray field. If construction has N layers
then magnetization at the top boundary oscillates with the period p = 3%,
taking values *es.

Therefore, we already know what the magnetostatic energy is from Kittel

construction. Indeed, we have
VU‘V¢d3r:/m~V¢d3r:/ m-n¢ d’r (1.7)
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and since m at the boundary Q of a simple Kittel pattern and Privorotski

pattern (with attuned period) coincide, we deduce that
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Privorotski construction — cell energy.

Anisotropy energy is defined as £,(m) = Q [(1 — m3) d°r. In the middle
region of the cell magnetization is m = +es — no contribution from this
region. In the left and right regions magnetization m = (—sin 6, 0, cos ) (as it
is tangent to corresponding circles) and hence (for 6, < 1)
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Surface energy is defined as £5(m) = ¢ [|Vm| d°r. We recall R, ~ 2% and

hn ~ g%: Therefore
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We combine surface and anisotropy energies and minimize in 8, to obtain
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Privorotski construction — total energy.

Total energy. We have a, = 3; and define h = Z,’;’Zl hn. The surface energy
of the middle " Kittel" region is ~ CM. We compute the total energy as
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Figure: Branching pattern (upper side)



Energy lower bound.

Similarly to the z-independent case we have
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After calculation we arrive at
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Combining the first and the last two terms as before we obtain

1
S=c¢sup|m / V' ms| + i m|n{1,7}
x’eFE))| 3| D| 3| Z ‘ 3( )‘ (L‘I‘IDQ

(n.,n2)ELXT

2/3
€ 1/3,2/3 1
Zm ( L 5“p|m3|/ [V ms| + E |ms(n, Z)| m'n{l,m

NELXZ



Energy lower bound.

Taking a = €/31%* and using as before
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Combining above estimates we arrive at
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Therefore the energy
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This is the matching lower bound for the micromagnetic energy of thick film
with z dependence.



	

