UNIVERSITÀ DI PARMA
DIPARTIMENTO DI SCIENZE MATEMATICHE, FISICHE E INFORMATICHE http://smfi.unipr.it

Notizie

SEMINARIO di Analisi Matematica

Data: martedi 12 dicembre, ore 14
Luogo: Aula B, Plesso di Matematica

Relatore: Prof.ssa Iwona Skrzypczak
MIMUW (Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw)
IMPAN (Institute of Mathematics, Polish Academy of Sciences)

Titolo: Absense of Lavrentiev's phenomenon meets renormalized solutions. The Musielak-Orlicz case

Tutti gli interessati sono invitati a partecipare, Proff. Alessandra Lunardi e Giampiero Palatucci
Abstract: We investigate a general nonlinear elliptic and parabolic equation with $\$ L^{\wedge} 1 \$$ data in the anisotropic Musielak-Orlicz space avoiding growth restrictions. The growth of the monotone vector field is controlled by a generalized nonhomogeneous and anisotropic N function. We do not assume any particular type of growth condition of M or its conjugate $\mathrm{M}^{\wedge *}$ and therefore the spaces we deal with are not reflexive.

The main results are existence and uniqueness of renormalized solutions to the above general elliptic and parabolic equations. As a main tool we provide density of smooth functions in modular topology. The condition we impose is certain type of regularity of $\$ \mathrm{M}(\mathrm{x}, \mid \mathrm{xi}) \$$ capturing interplay between behavior of $\$ M \$$ for big $\$ \| x i \mid \$$ and small changes of and space variables. Retrieving the known optimal results we exclude the Lavrentiev phenomenon in the variable exponent spaces under asymptotical log-H|"older continuity assumption and in the doublephase space within the sharp range of parameters.

In order to get existence, the regularity assumption can be simply skipped not only in the Orlicz case ($\$ \mathrm{M}(\mathrm{x}, \mathrm{xi})=\mathrm{M}(\mathrm{xi}) \$$), but also in reflexive spaces (e.g. if $\$ \mathrm{M}, \mathrm{M}^{\wedge *}$ lin\Delta_2\$), that is among others in the variable exponent, weighted Sobolev and the double phase space, no matter how irregular the exponent or the weights are.

