• Italiano
  • English

menu

ATENEO DI QUALITÀ ACCREDITATO ANVUR - FASCIA A

Giovedì 26 maggio ore 14:30 seminario BAT-MAT dott. Andrea Cattaneo "Strutture reali su varietà complesse: al confine tra geometria differenziale, complessa e algebrica"

Ciclo di Seminari BAT-MAT (Biscuits And Tea - Maths)

Giovedì 26 maggio 2022 alle ore 14.30, per il ciclo di seminari BAT-MAT, presso l’aula B del plesso di Matematica e Informatica, il ricercatore del nostro dipartimento prof. Andrea Cattaneo terrà un seminario dal titolo:

Strutture reali su varietà complesse: al confine tra geometria differenziale, complessa e algebrica

Tutti gli interessati sono invitati a partecipare, al termine del seminario verrà offerto un piccolo rinfresco in Common room.

Gli organizzatori: Davide AddonaPaolo BaroniNicoletta Tardini.

Abstract

Una varietà complessa è,  per definizione, una varietà differenziabile M sul cui fibrato tangente è definita una struttura complessa J. Così ogni varietà complessa (M, J) ammette una varietà "gemella", data da (M, -J). In alcuni casi queste due varietà sono tra loro biolomorficamente isomorfe: se ciò avviene, la scelta di un tale biolomorfismo è una struttura reale su (M, J). Le strutture reali si comportano essenzialmente come il coniugio per i numeri complessi, e ci permettono di vedere una varietà complessa come la complessificazione del loro luogo dei punti fissi, detto luogo reale. Nel seminario passeremo in rassegna alcuni esempi di strutture reali e di strumenti utili per lo studio delle varietà che ne ammettono. Infine ci concentreremo sul problema della classificazione delle strutture reali su una data varietà, con l'obiettivo di mostrare che se X è una varietà hyperkähleriana allora essa ammette al più un numero finito di strutture reali distinte.

Pubblicato Giovedì, 19 Maggio, 2022 - 10:38 | ultima modifica Giovedì, 19 Maggio, 2022 - 10:39